Copyright (C) Kevin Larke 2009-2020
This file is part of libcm.
libcm is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
libcm is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
See the GNU General Public License distributed with the libcm
package or look here:
The audio system is composed a collection of independent sub-systems. Each sub-system maintains a thread which runs asynchrounsly from the application, the MIDI devices, and the audio devices. To faciliate communication between these components each sub-system maintains two thread-safe data buffers one for control information and a second for audio data.
The audio devices are the primary driver for the system. Callbacks from the audio devices (See #cmApCallbackPtr_t) inserts incoming audio samples into the audio record buffers and extracts samples from the playback buffer.
When sufficient incoming samples and outgoing empty buffer space exists a sub-system thread is waken up by the callback. This triggers a DSP audio processing cycle which empties/fills the audio buffers. During a DSP processing cycle control messages from the application and MIDI are blocked and buffered. Upon completetion of the DSP cycle a control message transfer cycles occurs - buffered incoming messages are passed to the DSP system and messages originating in the DSP system are buffered by the audio system for later pickup by the application or MIDI system.
Note that control messages that arrive when the DSP cycle is not occurring can pass directly through to the DSP system.
The DSP system sends messages back to the host by calling cmRtDspToHostFunc_t provided by cmRtSysCtx_t. These calls are always made from within an audio system call to audio or control update within cmRtCallback_t. cmRtDspToHostFunc_t simply stores the message in a message buffer. The host picks up the message at some later time when it notices that messages are waiting via polling cmRtSysIsMsgWaiting().
Implementation: The audio sub-systems work by maintaining an internal thread which blocks on a mutex condition variable. While the thread is blocked the mutex is unlocked allowing messages to pass directly through to the DSP procedure via cmRtCallback().
Periodic calls from running audio devices update the audio buffer. When the audio buffer has input samples waiting and output space available the condition variable is signaled, the mutex is then automatically locked by the system, and the DSP execution procedure is called via cmRtCallback().
Messages arriving while the mutex is locked are queued and delivered to the DSP procedure at the end of the DSP execution procedure.
// Audio system result codes enum { kOkRtRC = cmOkRC, kThreadErrRtRC, kMutexErrRtRC, kTsQueueErrRtRC, kMsgEnqueueFailRtRC, kAudioDevSetupErrRtRC, kAudioBufSetupErrRtRC, kAudioDevStartFailRtRC, kAudioDevStopFailRtRC, kBufTooSmallRtRC, kNoMsgWaitingRtRC, kMidiSysFailRtRC, kMsgSerializeFailRtRC, kStateBufFailRtRC, kInvalidArgRtRC, kNotInitRtRC, kTimeOutErrRtRC, kNetErrRtRC }; enum { kAsDfltMsgQueueByteCnt = 0xffff, kAsDfltDevFramesPerCycle = 512, kAsDfltDspFramesPerCycle = 64, kAsDfltBufCnt = 3, kAsDfltSrate = 44100, kAsDfltSyncToInputFl = 1, kAsDfltMinMeterMs = 10, kAsDfltMeterMs = 50, kAsDfltMaxMeterMs = 1000 }; typedef cmHandle_t cmRtSysH_t; // Audio system handle type typedef unsigned cmRtRC_t; // Audio system result code struct cmRtSysCtx_str; // // DSP system callback function. // // This is the sole point of entry into the DSP system while the audio system is running. // // ctxPtr is pointer to a cmRtSysCtx_t record. // // This function is called under two circumstances: // // 1) To notify the DSP system that the audio input/output buffers need to be serviced. // This is a perioidic request which the DSP system uses as its execution trigger. // cmRtSysCtx_t.audioRateFl is set to true to indicate this type of callback. // // 2) To pass messages from the host application to the DSP system. // The DSP system is asyncronous with the host because it executes in the // audio system thread rather than the host thread. The cmRtSysDeliverMsg() // function synchronizes incoming messages with the internal audio system // thread to prevent thread collisions. // // Notes: // This callback is always made with the internal audio system mutex locked. // // The signal time covered by the callback is from // ctx-&gtbegSmpIdx to ctx-&gtbegSmpIdx+cfg-&gtdspFramesPerCycle. // // The return value is currently not used. typedef cmRC_t (*cmRtCallback_t)(void* ctxPtr, unsigned msgByteCnt, const void* msgDataPtr ); // Network nodes typedef struct { const cmChar_t* label; // Remote node label or NULL if this is the local node. const cmChar_t* ipAddr; // IP address in xxx.xxx.xxx.xxx form or NULL for 'localhost'. cmUdpPort_t ipPort; // IP port } cmRtSysNetNode_t; // Local endpoints. typedef struct { const cmChar_t* label; // Local endpoint label unsigned id; // Local endpoint id } cmRtSysNetEndpt_t; // Audio device sub-sytem configuration record typedef struct cmRtSysArgs_str { cmRpt_t* rpt; // system console object unsigned inDevIdx; // input audio device unsigned outDevIdx; // output audio device bool syncInputFl; // true/false sync the DSP update callbacks with audio input/output unsigned msgQueueByteCnt; // Size of the internal msg queue used to buffer msgs arriving via cmRtSysDeliverMsg(). unsigned devFramesPerCycle; // (512) Audio device samples per channel per device update buffer. unsigned dspFramesPerCycle; // (64) Audio samples per channel per DSP cycle. unsigned audioBufCnt; // (3) Audio device buffers. double srate; // Audio sample rate. int srateMult; } cmRtSysArgs_t; // Audio sub-system configuration record. // This record is provided by the host to configure the audio system // via cmRtSystemAllocate() or cmRtSystemInitialize(). typedef struct cmRtSysSubSys_str { cmRtSysArgs_t args; // Audio device configuration cmRtCallback_t cbFunc; // DSP system entry point function. void* cbDataPtr; // Host provided data for the DSP system callback. const cmChar_t* bcastAddr; // Network broadcast address. const cmChar_t* localNodeLabel; // Network local node address. const cmChar_t* localIpAddr; // Network local IP address (default:NULL to use any available address) cmUdpPort_t localIpPort; // Network local socket port address cmRtSysNetEndpt_t* endptArray; // Local end points unsigned endptCnt; // Count of local endpoints. } cmRtSysSubSys_t; // Signature of a callback function provided by the audio system to receive messages // from the DSP system for later dispatch to the host application. // This declaration is used by the DSP system implementation and the audio system. // Note that this function is intended to convey one message broken into multiple parts. // See cmTsQueueEnqueueSegMsg() for the equivalent interface. typedef cmRtRC_t (*cmRtDspToHostFunc_t)(struct cmRtSysCtx_str* p, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt); // Record passed with each call to the DSP callback function cmRtCallback_t typedef struct cmRtSysCtx_str { void* reserved; // used internally by the audio system bool audioRateFl; // true if this is an audio update callback unsigned srcNetNodeId; // Source net node if this is a msg callback originating from a remote network node. unsigned rtSubIdx; // index of the sub-system this DSP process is serving cmRtSysSubSys_t* ss; // ptr to a copy of the cfg recd used to initialize the audio system unsigned begSmpIdx; // gives signal time as a sample count cmRtDspToHostFunc_t dspToHostFunc; // Callback used by the DSP process to send messages to the host via the audio system. Returns a cmRtRC_t result code. // output (playback) buffers cmSample_t** oChArray; // each ele is a ptr to buffer with cfg.dspFramesPerCycle samples unsigned oChCnt; // count of output channels (ele's in oChArray[]) cmTimeSpec_t oTimeStamp; // input (recording) buffers cmSample_t** iChArray; // each ele is a ptr to buffer with cfg.dspFramesPerCycle samples unsigned iChCnt; // count of input channels (ele's in iChArray[]) cmTimeSpec_t iTimeStamp; } cmRtSysCtx_t; extern cmRtSysH_t cmRtSysNullHandle; // Allocate and initialize an audio system as a collection of 'cfgCnt' sub-systems. // Prior to call this function the audio audio ports system must be initalized // (via cmApInitialize()) and the MIDI port system must be initialized // (via cmMpInitialize()). Note also that cmApFinalize() and cmMpFinalize() // cannot be called prior to cmRtSysFree(). // See cmRtSystemTest() for a complete example. cmRtRC_t cmRtSysAllocate( cmRtSysH_t* hp, cmCtx_t* ctx ); // Finalize and release any resources held by the audio system. cmRtRC_t cmRtSysFree( cmRtSysH_t* hp ); // Returns true if 'h' is a handle which was successfully allocated by // cmRtSysAllocate(). bool cmRtSysHandleIsValid( cmRtSysH_t h ); // clientCbFunc is Called by cmRtSysReceiveMsg() to deliver internally generated msg's to the host. // Set to NULL if msg's will be directly returned by buffers passed to cmRtSysReceiveMsg(). cmRtRC_t cmRtSysBeginCfg( cmRtSysH_t h, cmTsQueueCb_t clientCbFunc, void* clientCbArg, unsigned meterMs, unsigned ssCnt ); // Reinitialize a previously allocated audio system. This function // begins with a call to cmRtSysFinalize(). // Use cmRtSysEnable(h,true) to begin processing audio following this call. cmRtRC_t cmRtSysCfg( cmRtSysH_t h, const cmRtSysSubSys_t* ss, unsigned rtSubIdx ); cmRtRC_t cmRtSysEndCfg( cmRtSysH_t h ); // Complements cmRtSysInitialize(). In general there is no need to call this function // since calls to cmRtSysInitialize() and cmRtSysFree() automaticatically call it. cmRtRC_t cmRtSysFinalize( cmRtSysH_t h ); // Returns true if the audio system has been successfully initialized. bool cmRtSysIsInitialized( cmRtSysH_t ); // Returns true if the audio system is enabled. bool cmRtSysIsEnabled( cmRtSysH_t h ); // Enable/disable the audio system. Enabling the starts audio stream // in/out of the system. cmRtRC_t cmRtSysEnable( cmRtSysH_t h, bool enableFl ); // // DSP to Host delivery function // // This function is used to pass messages from a DSP process to the HOST it // is always called from within the real-time thread. cmRtRC_t cmRtSysDspToHostSegMsg( cmRtSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt); cmRtRC_t cmRtSysDspToHost( cmRtSysH_t h, const void* msgDataPtr, unsigned msgByteCnt); // // Host to DSP delivery functions // // Deliver a message from the host application to the DSP process. (host -&gt DSP); // The message is formed as a concatenation of the bytes in each of the segments // pointed to by 'msgDataPtrArrary[segCnt][msgByteCntArray[segCnt]'. // This is the canonical msg delivery function in so far as the other host-&gtDSP // msg delivery function are written in terms of this function. // The first 4 bytes in the first segment must contain the index of the audio sub-system // which is to receive the message. cmRtRC_t cmRtSysDeliverSegMsg( cmRtSysH_t h, const void* msgDataPtrArray[], unsigned msgByteCntArray[], unsigned msgSegCnt, unsigned srcNetNodeId ); // Deliver a single message from the host to the DSP system. cmRtRC_t cmRtSysDeliverMsg( cmRtSysH_t h, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId ); // Deliver a single message from the host to the DSP system. // Prior to delivery the 'id' is prepended to the message. cmRtRC_t cmRtSysDeliverIdMsg( cmRtSysH_t h, unsigned rtSubIdx, unsigned id, const void* msgPtr, unsigned msgByteCnt, unsigned srcNetNodeId ); // // DSP to Host message functions // // Is a msg from the DSP waiting to be picked up by the host? (host &lt- DSP) // 0 = no msgs are waiting or the msg queue is locked by the DSP process. // &gt0 = the size of the buffer required to hold the next msg returned via // cmRtSysReceiveMsg(). unsigned cmRtSysIsMsgWaiting( cmRtSysH_t h ); // Copy the next available msg sent from the DSP process to the host into the host supplied msg buffer // pointed to by 'msgBufPtr'. Set 'msgDataPtr' to NULL to receive msg by callback from cmRtSysCfg_t.clientCbFunc. // Returns kBufTooSmallRtRC if msgDataPtr[msgByteCnt] is too small to hold the msg. // Returns kNoMsgWaitingRtRC if no messages are waiting for delivery or the msg queue is locked by the DSP process. // Returns kOkRtRC if a msg was delivered. // Call cmRtSysIsMsgWaiting() prior to calling this function to get // the size of the data buffer required to hold the next message. cmRtRC_t cmRtSysReceiveMsg( cmRtSysH_t h, void* msgDataPtr, unsigned msgByteCnt ); // Fill an audio system status record. void cmRtSysStatus( cmRtSysH_t h, unsigned rtSubIdx, cmRtSysStatus_t* statusPtr ); // Enable cmRtSysStatus_t notifications to be sent periodically to the host. // Set rtSubIdx to cmInvalidIdx to enable/disable all sub-systems. // The notifications occur approximately every cmRtSysCfg_t.meterMs milliseconds. void cmRtSysStatusNotifyEnable( cmRtSysH_t, unsigned rtSubIdx, bool enableFl ); // Return a pointer the context record associated with a sub-system cmRtSysCtx_t* cmRtSysContext( cmRtSysH_t h, unsigned rtSubIdx ); // Enable non-block mode. In this mode audio I/O is disabled // and the DSP callback is made every noBlockSleepMs milliseconds. cmRtRC_t cmRtSysEnableNoBlockMode( cmRtSysH_t h, unsigned rtSubIdx, bool enaFl, unsigned noBlockSleepMs ); // Return the count of audio sub-systems. // This is the same as the count of cfg recds passed to cmRtSystemInitialize(). unsigned cmRtSysSubSystemCount( cmRtSysH_t h ); // Audio system test and example function. void cmRtSysTest( cmCtx_t* ctx, int argc, const char* argv[] ); bool cmRtSysNetIsInitialized( cmRtSysH_t h ); cmRtRC_t cmRtSysNetDoSync( cmRtSysH_t h ); cmRtRC_t cmRtSysNetReport( cmRtSysH_t h ); cmRtRC_t cmRtSysNetReportSyncEnable( cmRtSysH_t h, bool enableFl ); cmRtRC_t cmRtSysNetGetHandle( cmRtSysH_t h, unsigned rtSubIdx, cmRtNetH_t* hp );